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Abstract 
This paper presents the development and evaluation of a camera vision-based rescue line robot 
designed for optimal performance for rescue league. Departing from conventional light sensor line 
tracking, our robot employs camera vision to navigate the rescue line accurately. The integration of 
custom-made, 3D printed PLA parts ensures seamless compatibility with the software, enhancing 
overall functionality and efficiency. Through rigorous testing and analysis, we evaluate the 
performance of our robot, considering factors such as line detection accuracy, obstacle avoidance 
capability, and manoeuvring efficiency. The results demonstrate the effectiveness of our approach in 
achieving reliable and precise line tracking for rescue operations. Ultimately, this research will be 
able to contribute to the field of rescue robotics, possibly offering insights into the integration of 
camera vision and custom-made components to enhance the performance of autonomous robots in 
real life scenarios. 

 
1.​ Introduction 

a.​ Team 
Our team consists of four members, Celeste Tan, Lim Kae Sophie, Xue Minjie and Aseera Jannath. 
Celeste Tan is the team leader, who is adept in both software and hardware, integrating both aspects 
into the project while ensuring coordination among team members. Lim Kae Sophie is the hardware 
specialist, who has contributed her profound technical expertise in handling intricate hardware 
components, ensuring seamless compatibility and reliability in our robot. Xue Minjie is our software 
specialist, who has contributed to the fluid integration of software components, while also ensuring 
optimal performance and functionality of our robot. Aseera Jannath also excels in software 
development, with their acute attention to detail being a huge asset to our team, ensuring reliability 
of our robot. 

 
2.​ Project Planning 

a.​ Project Plan 
Aims for the competition 
Through this competition, we hope to explore different methods and techniques of approaching 
robotics to design and develop an efficient and reliable autonomous robot, while coming up with 
innovative solutions to the various challenges in the competition. We hope to continually improve 
our robot based on past performances and aim to enhance the robustness and reliability of our 
robot. 
Milestones/Timeline 

●​ Research on innovative mechanisms: This was one of our first steps where we were trying to 
optimise the hardware for optimal performance of the robot. We researched some 
mechanisms and gained inspiration from other people’s works. It was also a time for 
reflection on older versions of the robot to identify areas for improvement 

●​ Planning bot structure: We considered software and hardware aspects in relation to each 
other to plan out the entire robot structure. In January, we informally arranged the parts on 
the robot in Fusion360 as a rough draft of how the robot would be (without any specifics 
such as individual components on the pi or motor driver, the parts of our robot were 
represented by simple boxes). We designed a CAD of our robot in Fusion360 to plan any 

 



major hardware or structural changes before implementing them. 
●​ Timeline planning and task delegation: The next step was to plan out the timeline and set 

small milestones for us to evaluate our progress. We also delegated tasks amongst members 
to get different aspects of the bot working.  

○​ Main milestones: January - Settled design of and ordered PCB, February - Basic code 
and line track ready, March - Full linetrack and evac zone code, April: Full linetrack 
and evac zone code together, able to run a full run reliably.  

○​ Task delegation: Hardware (Kae) does 3d printing for mounts, Software is delegated 
to different members with each member taking a part of the code (e.g. Minjie on 
rescue kit, Aseera on obstacle, Celeste on basic line track). PCB is prepared by all 
members of the team on an online call with screen share. If anyone finished their 
task early, they will be delegated to help someone else who is having trouble, or 
work on the next item on the list.  

●​ Testing and improvement: A huge part of our time was invested in this area as we had to test 
how well our ideas worked out in reality and look for improvements to be made. We made 
multiple versions of all hardware components (PCB, 3D prints) to improve our robot’s 
capabilities after extensive testing. 

●​ An important aspect of our whole project is also taking inspiration from others, not just 
learning about what worked but also what didn't so that we do not repeat the same mistakes 

Constraints 
●​ By taking into account the requirements of the task, we needed to allocate more time for the 

actual planning of the robot layout and structures as this would be essential for the rest of 
the plan to be carried out. 

●​ The size of our robot is limited by the size and arrangement of our components, as well as 
the limited precision of 3D printing at a small scale 

●​ Due to the limited budget provided to us, we had to carefully nitpick the components to use 
on our bot, minding cost. 

b.​ Integration plan 
●​ For efficient coordination between team members, we schedule regular meetups, and make 

use of platforms such as Github, VS Code (Live sharing) and Fusion360 that allow real-time 
collaboration and/or help us maintain an updated common repository.  

●​ We have a centralised meetup area that houses all our tools and components to ensure 
everything can be easily retrieved whenever we need it. 

●​ All parts of our robot are constantly being evaluated; we note down areas of improvement 
for mechanical, software and electrical aspects of the bot, and strive to create better 
iterations of our bot every time we update parts of the robot. 

●​ We tested all available options we have, such as trying to use light sensors, bottom camera 
and top camera for line track, and trying out different types of light sensors until we found 
one that best suited our needs. 

●​ After thorough and careful research, we have carefully selected and integrated various 
components, including motors, LiDARs, servos, cameras and microcontrollers, for reasons 
elaborated below in this entire document. 

Hardware 
Main Structure 

These are the main features of our robot. The 6 LiDARs and 2 cameras are our main inputs, providing 
us with information about the robot’s movement. It is driven by 2 DC motors connected to the drive 
base consisting of 2 rear omni wheels and 2 normal front wheels. Our rescue mechanism consists of 
the gripper, which grabs the rescue kit and victims and lifts them into the compartments. The sorter 
turns based on the object collected to sort the rescue kit and alive victims into one compartment and 
the dead victims into the other for deposition. 

 



a.​ Mechanical Design and 
Manufacturing 

Drivebase 

The robot is driven through differential steer, and has 
four wheels in total with the left and right wheels 
independently driven with one motor for each side. 
The front and back wheels on each side are connected 
through a gear train.  

Space Constraints 

We used encoded motors in order to implement PID in 
our driving. Encoded motors allow the robot to cross 
speed bumps and ramps that it would otherwise stall 
at. With encoders, PID can be used to account for the 
error in motor speed needed, giving accurate motor 
control. 

However, this increases the length of the motors, 
increasing the minimum width of the robot greatly at the 
front, since the camera is placed between the motors to 
remain at the pivot point. Initially, V1 had the motors 
placed side by side but away from the camera. V2 places 
the motors at an offset so that the width of the robot can 
be reduced more. This is especially valuable for tolerance when entering and exiting the evacuation 
zone and when navigating around obstacles as there might be a column, ramp or wall nearby, making 
it a tight fit. 

Gearbox 

The use of a gear train and gear box gives us more options and allows us to offset our motors to 
optimise space and minimise the size of our robot. Furthermore, both wheels on one side can be 
driven by the same motor, saving space compared to driving each wheel with a separate motor. 

Gearbox Development 

We went through multiple rounds of testing where we printed out small test prints modularly and 
incorporated the best working solution of each aspect into the current gearbox mechanism. 

The first prototype (Fig 1.1) involved using screws as pivot points but significant friction resulted in 
jerky movements. The second prototype (Fig 1.2) used lego axles as pivots, but the gears were 
constantly shaky and shifting in other axes. 
The final design (Fig 1.3) utilised ball bearings as they resulted in the smoothest movement. To 
prevent the gears from slipping off the ball bearings, they were secured using epoxy glue, when our 
final design was confirmed right before the nationals. 
Snap-Fit Mechanism 
The ball bearings are attached to the gearbox using a snap-fit 
mechanism, and can be removed by squeezing the two prongs 
together and pulling the ball bearing and gear out. We chose this 
mounting option over glueing the ball bearing directly to the 

 



gearbox as it allows us to swap gears out more easily 
The design is 3D printed in a sideways orientation such that the layer lines are not along the stress 
points created when bending the arms. 
Omni Wheels 

The omni wheels allow the back of the robot to translate perpendicularly to the robot’s direction of 
travel, especially when turning, so that the pivot point of the robot can be at the front, slightly 
behind the middle of the front wheel axis. This ensures consistency in movement, so even when the 
centre of gravity changes (e.g. when moving backwards), the pivot point remains the same. 

Custom-Made Omni Wheels Structure 

Our omni wheels are made by placing 20 mm diameter rubber 
o-rings around 3d printed donuts as seen below. Metal dowels are 
slotted through these prints and placed in one half of the omni 
wheel housing which has depressions for the metal dowels to rest 
upon, and the second half is then screwed onto the first to 
complete the omni wheel. The total diameter of the wheel is 60mm. 

Accurate Odometry 

Due to the difference in diameter of commercially available omni wheels and our drive wheel, with 
one full rotation of the drive wheel, the omni wheel rotates more than one full rotation. Over time, 
this causes the omni wheels to slip, and the rubber rollers will slip across the floor causing inaccurate 
odometry and unreliable positioning of the robot. The 3d printed omni wheel is designed to match 
the diameter of our front wheel, preventing slipping when rotated at the same angular velocity. 
Furthermore, the o-rings were specifically chosen to help overcome 
other parts of the challenge, such as speed bumps. 

Speed Bumps 

All commercially obtained omni wheels have rollers of a diameter 
smaller than 20mm (Figure 2.1).  When the omni wheels need to cross 
speed bumps laterally, such as on a sharp turn, it requires a strong 
sideways frictional force to cross the speed bump. The robot was 
unable to get across the speed bump in this situation, even with 
rigorous tuning, and the robot 
would get stuck. The 10mm 
radius o-rings (Fig 2.2, 2.3) 
make it easier for the robot to 
cross the speed bump. 

Rescue Mechanism 

Our rescue mechanism has 3 
main hardware elements, the gripper, the sorter and the 2 compartments. The gripper picks up the 
rescue kit, and the balls in the evacuation zone; the sorter sorts the balls according to their colour as 
detected by the top camera. Our compartments store the kit, and the live and dead victims 
separately for deposition at the 
evacuation points, allowing us to 
pick up victims in any order. 

Gripper 

Our white flat grippers are covered 
with foam tape, suspended more 
than 10mm from the ground to 
allow it to pass over speed bumps.  

Distance Between Grippers 

 



When the gripper hits the ball at an angle as the distance between the two grippers is less than 
50mm, the ball sometimes ‘rockets’ away due to the force exerted away from the robot (see diagram 
above). To solve this, the distance between the two grippers, when parallel, is the diameter of the 
larger ball, 50mm. This enables the gripper to grip smaller balls in a 3-point grip and 50mm balls in a 
2-point grip, keeping the ball within the grippers. 

Flat Gripper 

Initially, the robot was unable to be flush to the deposit 
point due to a curved gripper. With the flat gripper 
design, the robot is able to be flush against the deposit 
point (gripper flat against the deposit points) and prevent 
any objects from falling short of the deposit point when it 
deposits. 

Foam Tape 

The plastic grippers are too smooth to grip the ball tightly on their own, so we used a foam tape, 
which was soft and conforms to the shape of the balls to increase the surface area of contact. 

Colour of Gripper 

Our initial design used black coloured grippers. However, this was problematic as we used our top 
camera to differentiate between live and dead victims, based on the percentage of black pixels in the 
masked out image of the balls. Since both the gripper and foam were black, part of the gripper would 
contribute to the percentage of black in the mask, causing the camera to assume a larger percentage 
of black, which could result in silver balls being falsely detected as black. Thus, our subsequent 
grippers were printed in white, and white tape covers the black foam at the top (as seen in the image 
above) so that when viewed from the top camera, the only source of black would be from the balls. 

Compartments 

There are two compartments, a larger one for ‘live’ victims 
and a smaller one for ‘dead’ victims. They are hinged at the 
front of the robot, and lifted from 
the back with individual servos 
through a cam. This allows for more 
efficient and precise movement as 
the robot does not need to 
reposition itself after detecting the 
deposit point. 

Individual Compartments 

The two compartments ensure that the two deposits are independent, and 
the victims will not be accidentally deposited at the wrong evacuation point 
Furthermore, victims can be collected in any order as order of deposit is 
not affected by order of collection, as they can always be sorted into their 
respective compartments. 

b.​ Electronic Design and 
Manufacturing 

Overview and Electronics Diagram 

Above is a brief overview of our 
electronics design. We step down the 
voltage from the battery using 3 different 
voltage regulators to supply power to the 
various components. Most of the 
components above are connected 

 



through our custom printed circuit board that also serves as the chassis of the robot. 

Printed Circuit Board 

We designed our own printed circuit boards to improve the organisation of all the components on 
our bot. Here are some of our considerations when designing the PCB. 

●​ Copper Plane: In our PCB design, we opted to use copper pouring to optimise the power 
supply distribution of the robot. Copper planes for 3.3V, 5V, 6V, 7.4V and GND are used to 
quickly connect all the necessary pins without worrying about running out of space for 
traces. Furthermore, copper’s thermal conductivity also allows the plane to act as a heat sink 
to help dissipate heat and maintain low operating temperatures. We generally grouped 
components with similar voltage requirements together on the PCB so they can be easily 
connected through a copper plane. 

●​ Trace widths: We calculated the minimum trace width required for all the connections on our 
PCB to prevent overheating. This is especially important for traces delivering large currents. 
Since the heating effect of a wire is given by P = I2R, and the resistance of a trace is inversely 
proportional to the cross-sectional area of the traces (Ohm’s Law), these traces are much 
more likely to overheat and require a larger trace width to prevent it. 

●​ Spare pins: We also broke out spare unused pins of the microcontroller on the PCB in case 
we add more components. 

Sensors and components 

Controllers 

We used the Raspberry Pi Pico as our microcontroller for its compact size, affordability and 
versatility. Compared to alternatives like Arduino Mega, Raspberry Pi Pico offers a cost-effective 
solution without compromising performance, with its high amount of IO. It has 2 I2C buses, 2 
hardware serial, and 4 software serial enabled by PIO. The microcontroller's efficient processing 
power and real-time control capabilities enable us to manage and coordinate our actuators, as well 
as acquire and process data from various sensors.  

We use the Raspberry Pi 4B in conjunction with OpenCV and Python for image processing. On the pi, 
the user has no control over when a given process is executed, because the order in which processes 
are executed is determined by a scheduler, with no set time limit for completion. On Pico, the user 
can utilise timing and interrupts to ensure that sensor reading and motor control operations occur 
within a tight timing budget. 

Clutch Servos (3x 300° DS-S006L (9g), 3x 300° DS-R005 (2kg)) 

We use clutch servos for the gripper, deposit servo and sorting servo. In conventional servos, stalling 
occurs when the load applied exceeds the torque capability of the servo motor. When a normal servo 
is stalled for an extended period, the motor experiences increased current draw, which generates 
excess heat. This heat accumulation can potentially lead to thermal damage and eventual burnout of 
the servos. However, clutch servos help to mitigate this overheating problem by disengaging clutch 
mechanisms of the motor when it is about to stall, which prevents sudden shifts in power and hence 
prevents excessive power draw and overheating. 

Motor driver (DRV8833 Dual H-Bridge Motor Driver) 

We use 2 DRV8833 motor drivers which are surface-mounted onto our PCB to save space. To get a 3A 
continuous current which is what our motor needs (3.2A max current with no load), we used a 
HTSSOP package with a thermal pad that allows for greater heat dissipation and thus greater current 
(3-A RMS, 4-A Peak), as compared to the TSSOP package without a thermal pad (1-A RMS, 4-A Peak), 
and we routed the input and outputs in parallel as shown: 

LiDARs (5X VL53L0X and 1X VL53L1X) 

We used VL53L0X and VL53L1X, ToF sensors, as our distance sensors as it has a relatively small cone 
of sensing (25°) and allows us to detect long-range distances accurately. This is useful when we are 

 



using them to track the walls in the evacuation zone where the walls can sometimes be a significant 
distance away from the sensors. We chose this over the ultrasonic sensors as its larger cone of 
sensing makes long-distance sensing less reliable as more objects interfered with the readings. 

RGB Light Sensors (6X TCS3472) 

We mount light sensors on a separate PCB at the front of our robot to assist in line track and silver 
line detection. 

Multiplexer  

We are using the TCA9548A I2C multiplexer so that we can read from all the six LiDARs and all 6 light 
sensors in the same loop. Since they are all of the same address, 0x29, readdressing is required to be 
able to read from all of them, but there aren't enough pins on the pico alone to readdress them all. 
The multiplexer is surface mounted onto our PCB as well to save space. 

Software  
Main Loop 

Figure X is a high level overview of our main loop in the 
bot. We use the Pico to control our actuators and the 
robot's movement using a state machine, with each case 
referring to tasks that the bot has to complete. The 
Raspberry Pi communicates with the Pico and sends 
information such as the speed, rotation and task to the Pico based on what it sees after processing 
the images from the camera. The Pico also sends information such as whether it's currently line 
tracking or in the evacuation zone so that the Pi can apply the right image filters and send the right 
information to the Pico. 

Colour Space 

We use the HSV color space 
instead of the RGB space for 
image processing. The HSV 
space proves more 
advantageous as it allows for 
effective color masking by 
thresholding using the hue 
channel. RGB values are also 
highly sensitive to variations 
in lighting conditions, 
making it even more 
challenging to accurately 
precisely determine colors.  

 



Line Track 

We implemented an innovative approach for line tracking utilizing a pre-populated vector matrix, 
which accounts for pixel distance from the origin. The weighted sum of the matrix yields the overall 
output vector, which determines the target angle and rotation value (See below). Thus we can 
prioritise the lines that are closer to the robot, as seen in the “final_x” window where the sides that 
are nearer to the bottom are whiter (or higher in value) than the further or closer ones. 
Green Squares 

To determine the direction to turn when encountering green squares, both the positional 
relationship between green squares and black lines, as well as the number of green squares present 
have to be considered.  

Firstly, the sum of green pixels in the bottom camera frame is computed. If there are sufficient green 
pixels, we check the position of black lines and percentage of black in relation to the green squares. 
The relative positions of black pixels in the frame will determine whether the green squares will be 
taken into consideration. For instance, if the green squares lie above the black line, they will be 
ignored. Otherwise, the centroid of the black region is then computed, from which we can derive 
whether the green squares are to the left or right of the line segment, or if there are double squares, 
and execute the correct turn.  

Obstacle Avoidance 

We tried out various methods 
before coming up with the 
algorithm as seen below: 

First, the robot checks which side 
to turn to by comparing the left 
and right side LiDAR readings. The 
robot will perform the above 2 
main actions (see diagram) in a 
loop which causes it to move 
around the obstacle until it sees a 
line. Refer to the appendix for other methods we tried previously. 

Rescue Kit 

The collection of the rescue kit and successful return of the bot to the line relies on a combination of 
odometry and strategic positioning. 

To detect the rescue kit, the sum of blue pixels in the bottom camera frame is computed. If there are 
sufficient blue pixels, the robot will start rotating towards the blue cube. To ensure that the bot 
moves directly towards the rescue kit, the camera is aligned with the centroid of the kit before 
moving forward, which allows for more accurate positioning. This helps to optimise its trajectory, and 
ensure that the robot will pick up the cube reliably. We also decided to only approach the cube once 
the bot is sufficiently close to it so that the robot can return to the line relatively quicker. 

Once the camera is aligned with the kit’s centroid, the robot will drive forward. During both the 
rotational and forward motion, the distances travelled by each motor are recorded through the 
encoder values. This enables the robot to effectively trace its rotational and forward displacements. 
Upon reaching the cube, as indicated by our front LiDARs, the bot will pick it up. Then, it will navigate 
back to the line, by computing displacement from its last known line via the encoder values 
mentioned above.  

Line Gap and 135-degree Turns 

When encountering an end of a line, the bot first performs 90-degree sweeps in both directions on 
the spot to identify potential 90 and 135-degree turns. Utilising the bottom camera, the bot keeps 
track of the closest line detected on either side and turns in that direction. 

 



If no line is detected, the bot performs a straight drive from its original orientation until it detects the 
next line segment. As it moves, the bot scans within an inverted cone-shaped region to account for 
the perspective of the bottom camera (Fig Yy). This also helps to account for potential errors in the 
initial heading of the robot; even if the robot’s initial angle was off, the top side of the cone would 
ensure that the continuation of the line following the line gap remains captured within the mask. 
This is advantageous compared to a rectangular mask, as the latter may not be able to capture the 
line continuation adequately. Further pixels are also given more weight than nearer pixels. This is to 
ensure that the bot will not latch on to other adjacent lines, and will drive straight. However, there 
were some problems that we encountered using this approach with the bottom camera, which is 
mentioned in the appendix.  

 

 

 
Figure Yy 

Evacuation Zone 

We adopted a spiralling approach to navigate the evacuation (evac) zone, utilising diagonal LiDARs. 
The evac zone consists of three main sections: wall-track and ball collection, deposition, and exit. 

Wall-Track and Ball Collection 

Using LiDAR measurements, we used proportional control to maintain a certain distance from the 
wall, known as the setpoint distance. The larger the error, the larger the steering rate for the bot to 
correct itself until it is at the ideal setpoint distance. The distance from the wall is a function of time 
(as time passes, the setpoint distance increases), allowing us to accomplish a spiralling motion. 

We also used the Hough circles function from OpenCV to detect the balls. The top camera is used 
instead of the bottom camera so that the ball cannot block the entire FOV of the camera. The bot will 
move towards any balls it identifies while spiralling. To differentiate between ball types, the 
percentage of black pixels in the masked out balls is calculated. Once the balls are close enough to 
the grippers as indicated by the front LiDAR readings, the bot will initiate a pickup sequence. The 
balls will then subsequently be sorted into their respective components. 

Deposition 

After spiralling into the centre of the evac zone, the bot will spin in place to detect the two deposit 
points corresponding to the alive and dead deposit points. The bot will then travel towards the 
centroid of the deposit points and initiate the deposit sequence. The bot will then travel back to the 
centre to locate the other deposit point and repeat the same process. 

Exit 

Once finished depositing, the bot will return to walltracking to try and find the exit, which is 
indicated by an opening in the evac zone with a black strip. The openings are detected by a drastic 
jump in the diagonal LiDAR readings (eg. out of range), and the black strip is detected using the top 

 



camera to confirm that it is the exit instead of the entrance (marked by a silver tape instead). On 
successful exit, the bot will then transition back into linetrack.  

Performance Evaluation 
Line Track Tests 

We first conducted tests on individual tiles with various line patterns. then moved on to use 
combinations of tiles, to account for cases when the robot's initial position when entering a tile is not 
ideal. Finally we validated our bot with complete competition mats from 2022 & 2023 SG Open and 
2022 Virtual RCAP, which contain challenging obstacles such as narrow turns with speed bumps, and 
lines on separate tiles that are situated close to one another. 

The tests involved measuring the accuracy of the robot's trajectory, and its ability to maintain a 
consistent path while tracking the line by checking its reaction time to correct itself during sharp 
turns, curves and linegaps. We recorded the deviation from the desired path and analysed the data 
to assess the precision and reliability of the line track. By collating data on the types of tiles that the 
robot does not perform well for, we fine tuned our bot accordingly.  

In order to evaluate the rescue kit detection functionality, we set up scenarios with varying cube 
positions and orientations. The robot was tasked with detecting and accurately approaching the 
cubes. We measured the success rate of cube detection and analysed the data to determine the 
robot's proficiency in identifying and locating the cubes within the given environments. 

Hardware tests 

We started off with unit testing, followed by sub-system and system tests. Using the LiDARs as an 
example, individual testing was conducted by connecting each LiDAR separately to the 
microcontroller. Subsequently, the accuracy of the LiDARs was evaluated by comparing a known 
distance with the reading of the LiDAR. The LiDARs were then integrated with other aspects of the 
code such as line track to assess their impact on the overall robot performance. Any potential 
interference or issues were swiftly addressed through the debugging process. Once the integration 
was successful, the LiDARs were incorporated into the main codebase. 

Similar testing and integration procedures were conducted for all other components. This 
comprehensive testing ensures the reliability and functionality of our robot, contributing to its 
overall performance and success in fulfilling its intended tasks. For 3D prints, we start off with unit 
testing as well where we print tests for individual mechanisms. For example, for the gearbox, we 
initially printed the snap-fit mechanism in isolation, assessing its durability and reliability. 
Subsequently, the mechanism was used in the gearbox, and its overall robustness was examined 
prior to final integration. Next, we tested the hardware alongside the complete robot configuration 
to identify and address any potential issues. This iterative testing process allowed for continuous 
refinement of our design, ensuring accuracy and reliability in fulfilling its intended purpose. 

The test results played a crucial role in the development process. providing valuable feedback on the 
robot's strengths and areas for improvement, allowing us to make informed decisions on refining the 
algorithms, adjusting sensor parameters, and optimising control mechanisms. The analysis of the 
results helped us identify specific challenges and potential limitations of the robot's performance, 
which informed subsequent iterations of our development strategy. 

Conclusion 
In conclusion, our research endeavours focused on the development and optimization of a highly 
capable rescue line robot. Through the utilisation of advanced technologies and innovative design 
principles, we have successfully addressed key challenges and achieved significant progress in the 
field of autonomous robotics. 

 

 



Appendix  
Problem with linegap: Bot may be unable to differentiate between tiny gaps between tiles and actual 
line gaps. 

The bot may sometimes treat gaps between tiles as an end of line, resulting in it performing the 
entire linegap sequence, wasting precious time especially if it makes this mistake many times. In the 
worst case scenario, the bot may end up drifting from the original line entirely. This gap in tiles issue 
was a major problem we faced during the RoboCup nationals competition. Hence, this time around, 
we decided to resolve this issue by using the top camera instead, where the gap between the tiles 
would not be as significant. 

 

Obstacle: Testing and Previous Ideas 

Our previous approach involved using a PID algorithm to navigate around obstacles while 
maintaining a given set-point distance (Figure 1). The algorithm aimed to minimise the error between 
the desired distance and the measured distance from the obstacle using the LiDARs.  

  

                                              

However, we encountered reliability issues due to the limitations of the LiDAR sensor in accurately 
measuring the distance and accounting for the obstacle's angle. The sensor primarily measures the 
distance to the obstacle but struggles to accurately determine its angle or orientation. When the 
LiDAR measures distances beyond the obstacle, such as in the scenario in the diagram on the right, 
the error would be excessively large, causing the robot to deviate from its intended path and 
continuously rotate around a fixed point without returning to the desired trajectory. These 
limitations in accurately computing the error when the obstacle was not reliably detected made it 
challenging to achieve robust tuning in the PID algorithm. As such, we decided to choose another 
method that is less susceptible to tuning issues. 
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